Cart (Loading....) | Create Account
Close category search window
 

An application-centric characterization of domain-based SFC partitioners for parallel SAMR

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Steensland, J. ; Dept. of Electr. & Comput. Eng., Rutgers Univ., Piscataway, NJ, USA ; Chandra, S. ; Parashar, M.

Structured adaptive mesh refinement (SAMR) methods for the numerical solution of partial differential equations yield highly advantageous ratios for cost/accuracy as compared to methods based on static uniform approximations. These techniques are being effectively used in many domains including computational fluid dynamics, numerical relativity, astrophysics, subsurface modeling, and oil reservoir simulation. Distributed implementations of these methods, however, lead to significant challenges in dynamic data-distribution, load-balancing, and runtime management. This paper presents an application-centric characterization of a suite of dynamic domain-based inverse space-filling curve partitioning techniques for the distributed adaptive grid hierarchies that underlie SAMR applications. The overall goal of this research is to formulate policies required to drive a dynamically adaptive metapartitioner for SAMR grid hierarchies capable of selecting the most appropriate partitioning strategy at runtime based on current application and system state. Such a metapartitioner can significantly reduce the execution time of SAMR applications.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:13 ,  Issue: 12 )

Date of Publication:

Dec 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.