By Topic

Native data representation: An efficient wire format for high-performance distributed computing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Eisenhauer, G. ; Coll. of Comput., Georgia Inst. of Technol., Atlanta, GA, USA ; Bustamante, F.E. ; Schwan, K.

New trends in high-performance software development such as tool- and component-based approaches have increased the need for flexible and high-performance communication systems. When trying to reap the well-known benefits of these approaches, the question of what communication infrastructure should be used to link the various components arises. In this context, flexibility and high-performance seem to be incompatible goals. Traditional HPC-style communication libraries, such as MPI, offer good performance, but are not intended for loosely-coupled systems. Object- and metadata-based approaches like XML offer the needed plug-and-play flexibility, but with significantly lower performance. We observe that the flexibility and baseline performance of data exchange systems are strongly determined by their wire formats, or by how they represent data for transmission in heterogeneous environments. After examining the performance implications of using a number of different wire formats, we propose an alternative approach for flexible high-performance data exchange, Native Data Representation, and evaluate its current implementation in the portable binary I/O library.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:13 ,  Issue: 12 )