Cart (Loading....) | Create Account
Close category search window
 

Autonomous robot navigation based on fuzzy sensor fusion and reinforcement learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Tan, K.C. ; Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore ; Tan, K.K. ; Lee, T.H. ; Zhao, S.
more authors

This paper presents the design and implementation of an autonomous robot navigation system for intelligent target collection in dynamic environments. A feature-based multi-stage fuzzy logic (MSFL) sensor fusion system is developed for target recognition, which is capable of mapping noisy sensor inputs into reliable decisions. The robot exploration and path planning are based on a grid map oriented reinforcement path learning system (GMRPL), which allows for long-term predictions and path adaptation via dynamic interactions with physical environments. In our implementation, the MSFL and GMRPL are integrated into a subsumption architecture for intelligent target-collecting applications. The subsumption architecture is a layered reactive agent structure that enables the robot to implement higher-layer functions including path learning and target recognition regardless of lower-layer functions such as obstacle detection and avoidance. Real-world application using a Khepera robot shows the robustness and flexibility of the developed system in dealing with robotic behavior such as target collecting in an ever-changing physical environment.

Published in:

Intelligent Control, 2002. Proceedings of the 2002 IEEE International Symposium on

Date of Conference:

2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.