Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Is redundancy necessary to reduce delay?

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Keutzer, K. ; AT&T Bell Lab., Murray Hill, NJ, USA ; Malik, S. ; Saldanha, A.

Logic optimization procedures principally attempt to optimize three criteria: performance, area, and testability. The relationship between area optimization and testability has recently been explored. As to the relationship between performance and testability, experience has shown that performance optimizations can, and do in practice, introduce single stuck-at-fault redundancies into designs. Are these redundancies necessary to increase performance or are they only an unnecessary by-product of performance optimization? The authors give a constructive resolution of this question in the form of an algorithm that takes as input a combinational circuit and returns an irredundant circuit that is as fast. They demonstrate the utility of this algorithm on a well-known circuit, the carry-skip adder, and present a novel irredundant design of that adder. As this algorithm may either increase or decrease circuit area, the authors leave unresolved the question as to whether every circuit has all irredundant circuit that is at least as fast and is of equal or lesser area

Published in:

Design Automation Conference, 1990. Proceedings., 27th ACM/IEEE

Date of Conference:

24-28 Jun 1990