By Topic

Sequential circuit verification using symbolic model checking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
J. R. Burch ; Carnegie Mellon Univ., Pittsburgh, PA, USA ; E. M. Clarke ; K. L. McMillan ; D. L. Dill

The temporal logic model algorithm of E.M. Clarke et al. (ACM Trans. Prog. Lang. Syst., vol.8, no.2, p.244-63, 1986) is modified to represent a state graph using binary decision diagrams (BDDs). Because this representation captures some of the regularity in the state space of sequential circuits with data path logic, one is able to verify circuits with an extremely large number of states. This new technique is demonstrated on a synchronous pipelined design with approximately 5×1020 states. The logic that is used to specify circuits is a propositional temporal logic of branching time, called CTL or Computation Tree Logic. The model checking algorithm handles full CTL with fairness constraints. Consequently. it is possible to handle a number of important liveness and fairness properties. which would otherwise not be expressible in CTL. The method presented is not necessarily a replacement for brute-force state-enumeration methods but an alternative that may work efficiently when the brute force methods fail

Published in:

Design Automation Conference, 1990. Proceedings., 27th ACM/IEEE

Date of Conference:

24-28 Jun 1990