Cart (Loading....) | Create Account
Close category search window
 

Intersubband transitions in narrow InAs/AlSb quantum wells

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

13 Author(s)
Larrabee, D.C. ; Dept. of Electr. & Comput. Eng., Rice Univ., Houston, TX, USA ; Tang, J. ; Liang, M. ; Khodaparast, G.A.
more authors

We have investigated intersubband transitions (ISBTs) in InAs/AlSb multiple quantum wells. In wells from 7 to 10 nm wide, the ISBT energy increases with decreasing well width and temperature. We do not observe photoluminescence (PL) from these wells. In wells from 2.4 to 6 nm wide, we observe PL but not ISBTs. We have calculated the band structure of these samples using an 8 band k.p theory including strain and many-body effects. We have modelled the dependence of the ISBT energy on well width and temperature. In addition, we have observed the effects on ISBTs of QW interface type and Si doping in the well.

Published in:

High Performance Devices, 2002. Proceedings. IEEE Lester Eastman Conference on

Date of Conference:

6-8 Aug. 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.