By Topic

Coded FH/SS Communications in the Presence of Combined Partial-Band Noise Jamming, Rician Nonselective Fading, and Multiuser Interference

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Geraniotis, E. ; Univ. of Maryland., College Park, MD, USA ; Gluck, J.W.

In this paper we address the problem of combatting combined interference in spread-spectrum communication links. We consider frequency-hopped spread-spectrum systems with M -ary FSK modulation and noncoherent demodulation which employ forward-error-control coding. The interference consists of partial-band noise jamming, nonselective Rician fading, other-user interference, and thermal noise. The coding schemes which we analyze include: ReedSolomon codes (with or without diversity and error-only, erasure-only, or parallel erasure/error decoding), binary, nonbinary, and dual- k convolutional codes with and without side information (information about the state of the channel), and concatenated schemes (Reed-Solomon outer codes with either inner detection-only block codes or inner convolutional codes). In all cases we derive 1) the minimum signal-to-jammer energy ratio required to guarantee a desirable bit error rate as a function of ρ, the fraction of the band which is jammed, when the number of interfering users is fixed; and 2) the maximum number of users that can be supported by the system as a function of ρ, when the signal-to-jammer energy ratio is fixed.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:5 ,  Issue: 2 )