Cart (Loading....) | Create Account
Close category search window
 

A Statistical Model for Indoor Multipath Propagation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Saleh, A.A.M. ; AT&T Bell Labs., Holmdel, NJ, USA ; Valenzuela, R.A.

The results of indoor multipath propagation measurements using 10 ns, 1.5 GHz, radarlike pulses are presented for a medium-size office building. The observed channel was very slowly time varying, with the delay spread extending over a range up to about 200 ns and rms values of up to about 50 ns. The attenuation varied over a 60 dB dynamic range. A simple statistical multipath model of the indoor radio channel is also presented, which fits our measurements well, and more importantly, appears to be extendable to other buildings. With this model, the received signal rays arrive in clusters. The rays have independent uniform phases, and independent Rayleigh amplitudes with variances that decay exponentially with cluster and ray delays. The clusters, and the rays within the cluster, form Poisson arrival processes with different, but fixed, rates. The clusters are formed by the building superstructure, while the individual rays are formed by objects in the vicinities of the transmitter and the receiver.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:5 ,  Issue: 2 )

Date of Publication:

February 1987

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.