By Topic

High-frequency propagation and failure of asymmetric half-disk field access magnetic bubble device elements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gal, L. ; California Institute of Technology, Pasadena, CA ; Humphrey, Floyd B.

High-frequency propagation characteristics and failure modes in 14-μm period, 1.8-μm gap, asymmetric half-disk field-access device were studied using a high-speed optical sampling technique. Propagation elements as well as normal and hand gun corners and chevron structures were included. The operating bias margin at 1MHz, for a structure that had 1.2 MHz as highest possible frequency, was about half of the margin for frequencies of 200 kHz and below. The phase lag between the bubble leading wall and the instantaneous rotating field direction was nearly 90° as the bubble moved through the center of the element where the lag was the greatest. The peak velocity of the leading wall of 55 m/s and the trailing wall of 46 m/s is attributed to bubble interaction with the Permalloy structure creating a ∼125 Oe in-plane field that greatly increases the free bubble "saturation" velocity.

Published in:

Magnetics, IEEE Transactions on  (Volume:15 ,  Issue: 4 )