By Topic

Signal reconstruction from two close fractional Fourier power spectra

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
T. Alieva ; Faculteit Elektrotechniek, Technische Universiteit Eindhoven, Netherlands ; M. J. Bastiaans ; L. Stankovic

Based on the definition of the instantaneous frequency (signal phase derivative) as a local moment of the Wigner distribution, we derive the relationship between the instantaneous frequency and the derivative of the squared modulus of the fractional Fourier transform (fractional Fourier transform power spectrum) with respect to the angle parameter. We show that the angular derivative of the fractional power spectrum can be found from the knowledge of two close fractional power spectra. It permits us to find the instantaneous frequency and to solve the phase retrieval problem up to a constant phase term, if only two close fractional power spectra are known. The proposed technique is noniterative and noninterferometric. The efficiency of the method is demonstrated on several examples including monocomponent, multicomponent, and noisy signals. It is shown that the proposed method works well for signal-to-noise ratios (SNRs) higher than about 3 dB. The appropriate angular difference of the fractional power spectra used for phase retrieval depends on the complexity of the signal and can usually reach several degrees. Other applications of the angular derivative of the fractional power spectra for signal analysis are discussed. The proposed technique can be applied for phase retrieval in optics, where only the fractional power spectra associated with intensity distributions can be easily measured.

Published in:

IEEE Transactions on Signal Processing  (Volume:51 ,  Issue: 1 )