By Topic

A class of frequency-domain adaptive approaches to blind multichannel identification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Huang, Y.A. ; Lucent Technol. Bell Labs., Murray Hill, NJ, USA ; Benesty, J.

We extend our previous studies on adaptive blind channel identification from the time domain into the frequency domain. A class of frequency-domain adaptive approaches, including the multichannel frequency-domain LMS (MCFLMS) and constrained/unconstrained normalized multichannel frequency-domain LMS (NMCFLMS) algorithms, are proposed. By utilizing the fast Fourier transform (FFT) and overlap-save techniques, the convolution and correlation operations that are computationally intensive when performed by the time-domain multichannel LMS (MCLMS) or multichannel Newton (MCN) methods are efficiently implemented in the frequency domain, and the MCFLMS is rigorously derived. In order to achieve independent and uniform convergence for each filter coefficient and, therefore, accelerate the overall convergence, the coefficient updates are properly normalized at each iteration, and the NMCFLMS algorithms are developed. Simulations show that the frequency-domain adaptive approaches perform as well as or better than their time-domain counterparts and the cross-relation (CR) batch method in most practical cases. It is remarkable that for a three-channel acoustic system with long impulse responses (256 taps in each channel) excited by a male speech signal, only the proposed NMCFLMS algorithm succeeds in determining a reasonably accurate channel estimate, which is good enough for applications such as time delay estimation.

Published in:

Signal Processing, IEEE Transactions on  (Volume:51 ,  Issue: 1 )