Cart (Loading....) | Create Account
Close category search window
 

A modeling study on steady-state and transverse dynamic motion of a towed array system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Chuan Lee ; California State Univ., Long Beach, CA, USA and Hughes Aircraft Company, Fullerton, CA, USA

A numerical technique for mathematically modeling the steady-state and transverse dynamic motion of an underwater towed sonar array is presented. The transverse vibration response of the array is modeled using the finite difference method; the array itself is assumed to be nonneutrally buoyant and possesses a complex modulus and hence inherent damping. The results obtained from this model should provide useful information for further studying the beamforming and passive-ranging performance degradation and predicting the self-noise level of the towed array system.

Published in:

Oceanic Engineering, IEEE Journal of  (Volume:3 ,  Issue: 1 )

Date of Publication:

January 1978

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.