By Topic

Active microwave measurement from space of sea-surface winds

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Young, J. ; General Dynamics, Fort Worth, TX, USA ; Moore, R.K.

Radar backscatter measurements from the ocean were made at 13.9 GHz from Skylab. The radar signal increased rapidly with wind speed over the entire range of winds encountered, and for angles of incidence of30degand larger. Signals observed were normalized to a nominal incidence angle (from values withinpm2degof the nominal) and to a nominal upwind observation direction, using a theoretical model that has been verified as approximately true with aircraft experiments. The wind speed was regressed against the resulting scattering coefficientssigma^{0}and the values ofbetain windpropto sigma^{0beta}were obtained for incident angles of1deg , 17deg , 32deg , 43deg,and50deg, and for vertical, horizontal, and cross polarizations. For the three larger angles,betavaries from 0.3 to 0.6. Observations during the summer and winter Skylab missions were treated separately because of possible differences caused by an accident to the antenna between the two sets of observations. The results are in general agreement with the theory [26] in all cases, with the winter and cross-polarized agreement somewhat better than that for summer like-polarized data. The "objective analysis" method used for determining "surface-truth" winds in the Skylab experiment was tested by comparing results obtained at weather ships (using all other ship reports to produce the analysis) with the observations made by the weather ships themselves. In most cases, the variance about the regression line between objective analysis and weather-ship data actually exceeded that about the regression line between objective analysis and backscattcr data!

Published in:

Oceanic Engineering, IEEE Journal of  (Volume:2 ,  Issue: 4 )