By Topic

Adaptive State Estimation for a System With Unknown Input and Measurement Bias

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Moose, R.L. ; Virginia Polytechnic Institute and State University, Blacksburg, VA ; Sistanizadeh, M. ; Skagfjord, G.

An adaptive state estimator for passive underwater tracking of maneuvering targets is developed. The state estimator is designed specifically for a system containing independent unknown or randomly switching input and measurement biases. In modeling the stochastic system, it is assumed that the bias sequence dynamics for both input and measurement can be modeled by a semi-Markov process. By incorporating the semi-Markovian concept into a Bayesian estimation technique, an estimator consisting of a bank of parallel adaptively weighted Kalman filters has been developed. Despite the large and randomly varying biases, the proposed estimator provides an accurate estimate of the system states.

Published in:

Oceanic Engineering, IEEE Journal of  (Volume:12 ,  Issue: 1 )