Cart (Loading....) | Create Account
Close category search window
 

A flush-mounted leaky-wave antenna with predictable patterns

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Honey, R.C. ; Stanford Research Institute, Menlo Park, CA, USA

This paper describes the design and the measured performance of a large, flat antenna consisting of an inductive grid spaced over a conducting surface. The analysis employs the transverse-resonance method to determine the radiating properties of the structure. This analytical technique is shown to predict very accurately the amplitude and phase of the illumination along the aperture of the antenna. An antenna was built with an 18- by 24-inch aperture and tested over the frequency band from 7-to-13 kmc. The results of these tests confirm the theoretical predictions in every detail. A pencil beam from the antenna scans in the H-plane (perpendicular to the antenna) from20degto60degfrom the normal to the aperture as the frequency changes from 7-to-13 kmc. The H-plane beamwidth remains virtually constant over most of this band. The first H-plane sidelobe or shoulder is at least 29 db below the main lobe from 7-to-10 kmc, and at least 23 db below from 10-to-13 kmc. All H-plane sidelobes beyond three or four beamwidths on either side of the main lobe are at least 40 db below the main lobe everywhere in the 7-to-13 kmc band. At the design frequency the measured pattern agrees with the theoretical pattern within a fraction of a db down to 40 db below the peak of the main lobe, even though the gain of the antenna at this frequency is only 33 db.

Published in:

Antennas and Propagation, IRE Transactions on  (Volume:7 ,  Issue: 4 )

Date of Publication:

October 1959

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.