By Topic

A comparison between two kinds of equivalent currents to analyze conducting bodies with apertures using moment methods: Application to horns with symmetry of revolution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Catedra, M. ; Departamento de Radiacion, Universidad Politecnica de Madrid Spain

A system of integral equations (SIE) based on the unique-hess theorem that uses only electric equivalent currents (EEC) is formulated to analyze conducting bodies with apertures. This SIE is compared with an SIE that uses both electric and magnetic equivalent currents (EMEC). In general, to solve both SIE's numerically difficult computations of Cauchy principal-value integrals with highly singular kernels are required. These integrals appear when computing electric (magnetic) fields created by magnetic (electric) currents. Their evaluation can be avoided using the EEC approach in many practical cases when the main interest is in the radiation patterns of aperture antennas. The two SIE's are compared by carrying out an analysis of rotationally symmetric horns using the moment method (MM) in its formulation for bodies of revolution. Numerical results of electric currents and radiation patterns are presented for small horns of various geometries. These results compare quite well with measurements for both SIE's. However, the central processing unit (CPU) time for the EEC formulation is an order of magnitude smaller than for the EMEC formulation.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:35 ,  Issue: 7 )