By Topic

Electromagnetic scattering from electrically large coated flat and curved strips: Entire domain Galerkin formulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
L. Medgyesi-Mitschang ; McDonnell Douglas Res. Labs., St. Louis, MO USA ; J. Putman

Efficient numerical solutions are presented for electromagnetic scattering for classes of electrically large, coated, perfectly conducting strips which are flat or curved. The formulation is based on the solution of a coupled system of electric- and magnetic-field integral equations using the method of moments (MM). Entire domain Galerkin representations for the currents are used on the surface of the coating and at the coating-conductor interface. The resulting symmetric matrix equation is well conditioned and admits rapid, accurate solutions. Numerical results are presented for various coating thicknesses, strip widths, and curvatures for the transverse electric (TE) and transverse magnetic (TM) cases. The convergence of the Galerkin solution is examined as a function of these parameters. The effect of the edge approximation on the choice of expansion functions is discussed. The numerical results are compared with experimental measurements.

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:35 ,  Issue: 7 )