By Topic

Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Umashankar, K. ; Univ. of Illinois, Chicago, IL, USA ; Taflove, Allen ; Rao, S.M.

The recent development and extension of the method of moments technique for analyzing electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objects is presented based on the combined field integral equations. The surfaces of the homogeneous three-dimensional arbitrary geometrical shapes are modeled using surface triangular patches, similar to the case of arbitrary shaped conducting objects. Further, the development and extensions required to treat efficiently three-dimensional lossy dielectric objects are reported. Numerical results and their comparisons are also presented for two canonical dielectric scatterers-a sphere and a finite circular cylinder.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:34 ,  Issue: 6 )