Cart (Loading....) | Create Account
Close category search window
 

Simulation and analysis of antennas radiating in a complex environment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kim, J. ; Texas Instruments Inc., McKinney, TX, USA ; Burnside, W.D.

An accurate and efficient numerical solution is developed for predicting high-frequency radiation patterns of antennas mounted on curved surfaces. This solution employs the uniform geometrical theory of diffraction (UTD) and has mainly been used to analyze airborne antenna patterns. In this case the aircraft is modeled in its most basic form so that the solution is applicable to general-type aircraft. The fuselage is modeled as a perfectly conducting composite ellipsoid, whereas, the wings, stabilizers, nose, fuel tanks, and engines, etc. are simulated by perfectly conducting fiat plates. The composite-ellipsoid fuselage model is necessary to simulate successfully the wide variety of real world fuselage shapes. Since the antenna is mounted on the fuselage, it has a dominant effect on the resulting radiation pattern, so it must be simulated accurately, especially near the antenna. Various radiation patterns are calculated for military aircraft, private aircraft, and the space shuttle orbiter. The application of this solution to practical airborne antenna problems illustrates its versatility and design capability. The solution accuracy is verified by the comparisons between calculated and measured data.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:34 ,  Issue: 4 )

Date of Publication:

Apr 1986

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.