By Topic

General relations for a phased array of printed antennas derived from infinite current sheets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
D. Pozar ; Univ. of Massachusetts, Amherst, MA, USA

Simple and general relations characterizing the behavior of infinite phased arrays of printed antenna elements are derived from a model based on infinite current sheets. The Green's function of an electric current source on a grounded dielectric slab is used in various limiting forms to treat arrays in free space, arrays above a ground plane, arrays on a semi-infinite substrate, and arrays on a grounded dielectric slab. Current sheets are selected, using the orthogonality properties of the Floquet modes of the infinite array Green's function, to excite only a few specific low-order Floquet modes. Results from this idealized model, in the form of reflection coefficient magnitudes and input resistance, are compared with rigorous moment method solutions for specific elements (dipoles and microstrip patches). It is shown how the dominant scanning characteristics of a printed phased array, such as reflection coefficient and input resistance trends, scan blindnesses, and grating lobe effects, are dictated more by factors such as element spacing and substrate parameters than by the particular element type itself.

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:33 ,  Issue: 5 )