By Topic

Modeling antennas near to and penetrating a lossy interface

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Burke, G. ; Lawrence Livermore National Lab., Livermore, CA, USA ; Miller, E.K.

A technique for modeling wire objects interacting across or penetrating the planar interface which separates two half-spaces is described. The moment-method treatment is employed, based on the thin wire approximation to the electric-field integral equation, with the effect of the interface included via the Sommerfeld integrals. The computation time associated with evaluating the latter is substantially shortened by using an interpolation-based technique plus asymptotic field expressions. Although developed specifically for the wire problem, the procedure is also applicable, with slight modification, to modeling surface objects as well. Special care is taken to account for the charge discontinuity that occurs at the point a wire penetrates the interface. Example calculations are shown for a monopole antenna driven against ground stakes and simple ground screens, the fields of buried objects, and a simple electromagnetic pulse (EMP) simulator.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:32 ,  Issue: 10 )