Cart (Loading....) | Create Account
Close category search window
 

Frequency swept tomographic imaging of three-dimensional perfectly conducting objects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chi Chan ; Lincoln Lab., MIT, Lexington, MA, USA ; Farhat, N.H.

The use of frequency swept or frequency diversity techniques to achieve, superresolution in the imaging of three-dimensional perfectly conducting objects is studied and demonstrated by computer simulations. The frequency swept imaging concept is found to be a generalization of the inverse scattering theory. By invoking Fourier domain projection theorems, it is demonstrated analytically that images of separate slices of three-dimensional targets can be obtained, thus establishing the feasibility of a tomographic radar. Computer simulation results that verify these theories for extended and composite point scattering objects are presented.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:29 ,  Issue: 2 )

Date of Publication:

Mar 1981

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.