By Topic

Analysis of a circular microstrip disk antenna with a thick dielectric substrate

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

The problem of a circular microstrip disk excited by a probe is solved using rigorous analysis. The disk is assumed to have zero thickness, and the current on the probe is taken to be uniform. Using vector Hankel transforms the problem is formulated in terms of vector dual-integral equations, from which the unknown current can be solved for. Due to the singular nature of the current distribution arising from probe excitation, the direct application of Galerkin's basis function expansion method gives a slowly convergent result. Therefore the singular part of the current is removed since the singularity is known a priori. The unknown current to be solved for is then regular and tenable to Galerkin's method of analysis. It is shown that this analysis agrees with the single-mode approximation when the dielectric substrate layer is thin, and that it deviates from the single-mode approximation when the substrate layer is thick. Excellent agreement of both the computed real and imaginary parts of the input impedance with experimental data is noted. The radiation patterns and the current distributions on the disk are also-presented.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:29 ,  Issue: 1 )