Cart (Loading....) | Create Account
Close category search window
 

On grating nulls in adaptive arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ishide, A. ; Electronic Navigation Research Institute, Tokyo, Japan ; Compton, R.T., Jr.

The effect of element patterns on grating nulls in adaptive arrays is considered. Two simple array models, a two-element and a three-element array with dipole element patterns, are used to study this question. The element patterns are assumed unequal (i.e., the beam maxima point in different directions). It is shown that element patterns greatly affect the occurrence of grating nulls in the array. Unequal element patterns cause extra grating nulls ("sign reversal grating nulls") to occur, in addition to conventional grating nulls. These sign reversal grating nulls can occur even with element spacing less than a half-wavelength. For a two-element array with dipole element patterns, it turns out that grating nulls cannot be avoided if the spacing is greater than a half-wavelength. However, with more than two elements, the situation is not so bleak. An example is given of a three-element array with dipole patterns and one-wavelength spacing in which all grating nulls are eliminated.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:28 ,  Issue: 4 )

Date of Publication:

Jul 1980

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.