By Topic

Reflector radiation pattern from planar near-field measurements of array feed

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hamada, S. ; TRW Defense and Space Systems Group, Redondo Beach, CA, USA ; Ingerson, P. ; Rusch, W.

High gain shaped beam antennas for satellite frequency reuse applications are almost exclusively obtained by the use of complex multielement feed arrays to provide pattern control in conjunction with offset reflectors to remove blockage effects. In the design of complex multielement feed arrays for offset reflectors, the element excitations are usually synthesized using the isolated element properties. Proper performance of the array often requires that these theoretical excitations be modified to account for the effects on the feed elements due to the array environment. Near-field planar probing of the fields of the feed array have been found to provide an efficient and accurate method of predicting the secondary performances, including cross polarization and axial ratio. The nearfield measurement technique, moreover, provides an extremely effective method of determining the element performance and for determining the required compensation for desired antenna performance.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:28 ,  Issue: 4 )