By Topic

Depolarization and scattering of electromagnetic waves by irregular boundaries for arbitrary incident and scatter angles full-wave solutions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bahar, E. ; Univ. of Nebraska, Lincoln, NE, USA ; Rajan, G.

Explicit expressions are presented for the radiation fields scattered by rough surfaces. Both electric and magnetic dipole sources are assumed, thus excitations of both vertically and horizontally polarized waves are considered. The solutions are based on a full-wave approach which employs complete field expansions and exact boundary conditions at the irregular boundary. The scattering and depolarization coefficients axe derived for arbitrary incident and scatter angles. When the observation point is at the source these scattering coefficients are related to the backscatter cross section per unit area. Solutions based on the approximate impedance boundary condition are also given, and the suitability of these approximations are examined. The solutions are presented in a form that is suitable for use by engineers who may not be familiar with the analytical techniques and they may be readily compared with earlier solutions to the problem. The full-wave solutions are shown to satisfy the reciprocity relationships in electromagnetic theory, and they can be applied directly to problems of scattering and depolarization by periodic and random rough surfaces.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:27 ,  Issue: 2 )