By Topic

A new series representation for the radiation integral with application to reflector antennas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
V. Galindo-Israel ; California Inst. of Technology, Pasadena, CA, USA ; R. Mittra

Given the true or any approximate current on a reflector, the radiated far-field is determined from a rapidly convergent series representation of the radiation integral. The leading term is a well-shaped J_{1}(x)/x beam pointing in a desired direction. Higher order terms provide perturbations to the leading term. The coefficients of the series are independent of the observation angles. Hence, once they are computed, the field may be determined very rapidly at large numbers of points. Initially, a suitable small angle approximation is made that places the radiation integral in the form of a Fourier transform on a circular disk. The theory is then extended such that the results are valid in both the near and the wide angle regions. Application to a rotationally symmetric paraboloid is presented herein. Other applications include the offset and dual reflectors and near- to far-field integrations. A modified form of the series can also be used for Fresnel zone computations.

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:25 ,  Issue: 5 )