Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. For technical support, please contact us at We apologize for any inconvenience.
By Topic

A new approach based on a combination of integral equation and asymptotic techniques for solving electromagnetic scattering problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wai Lee Ko ; University of Illinois, Urbana, IL, USA ; Mittra, R.

We introduce a new approach for combining the integral equation and high frequency asymptotic techniques, e.g., the geometrical theory of diffraction. The method takes advantage of the fact that the Fourier transform of the unknown surface current distribution is proportional to the scattered far-field. A number of asymptotic methods are currently available that provide good approximation to this farfield in a convenient analytic form which is useful for deriving an initial estimate of the Fourier transform of the current distribution. An iterative scheme is developed for systematically improving the initial form of the high frequency asymptotic solution by manipulating the integral equation in the Fourier transform domain. A salient feature of the method is that it provides a convenient validity check of the solution for the surface current distribution by verifying that the scattered field it radiates indeed satisfies the boundary conditions at the surface of the scatterer. Another important feature of the method is that it yields both the induced surface current density and the far-field. Diffraction by a strip (two-dimensional problem) and diffraction by a thin plate (three-dimensional problem) are presented as illustrative examples that demonstrate the usefulness of the approach for handling a variety of electromagnetic scattering problems in the resonance region and above.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:25 ,  Issue: 2 )