By Topic

Measurement of oceanic wind speed from HF sea scatter by skywave radar

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Maresca, J., Jr. ; Stanford Research Institute, Menlo Park, CA USA ; Barnum, J.

Remote measurements of the spatial mean ocean wind speeds were obtained using Doppler spectra resolved to 0.08 Hz from high-resolution HF skywave-radar backscatter measurements of the ocean surface. A standard deviation of 2.4 m/s resulted from the correlation of observed winds over the ocean and the broadening of the Doppler spectra in the vicinity of the higher first-order Bragg line. This broadening, for Doppler spectra unperturbed by the ionospheric propagation, is proportional to the increase in power caused by higher order hydrodynamic and electromagnetic effects in the vicinity of the Bragg line and inversely proportional to the square root of the radio frequency. A lower bound on the measure of wind speed was established at 5 m/s by the low resolution spectral processing and low second-order power. An upper limit is suggested by the steep slope in the region of the sea backscatter spectrum outside the square root of two times the first-order Bragg line Doppler.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:25 ,  Issue: 1 )