Cart (Loading....) | Create Account
Close category search window

A model for non-Rayleigh sea echo

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jakeman, E. ; Royal Radar Establishment, Malvern, Worcs., UK ; Pusey, P.N.

A mathematical model for non-Rayleigh microwave sea echo is developed which describes explicitly the dependence of statistical properties of the radar cross section on the area of sea surface illuminated by the radar. In addition to the first probability distribution of the scattered radiation, its temporal and spatial correlation functions are also considered. It is shown that, in general, these correlation functions decay on at least two scales, the second, non-Rayleigh, contributions being strongly dependent on the properties of a "single scatterer." Predictions of the model are found to be in qualitative agreement with existing experimental data. A new class of probability distributions, the "K-distributions," is introduced, which may prove useful for fitting such data.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:24 ,  Issue: 6 )

Date of Publication:

Nov 1976

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.