By Topic

Shape of the 5 mm oxygen band in the atmosphere

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Rosenkranz, P.W. ; Massachusetts Institute of Technology, MA, USA

The problem of absorption of microwaves by molecular oxygen in the atmosphere is treated by means of a first-order approximation to the impact theory of overlapping spectral lines. By including only the coupling between adjacent rotational states in molecular collisions, we have devised a simple approximate method for computing the interference between lines from measurements on the resolved lines. The need for an empirically determined function describing the linewidth/ pressure ratio is eliminated. Comparisons with measurements at atmospheric pressures show that the first-order interference accounts for the low absorption at the band wings near 1 atm pressure. It also predicts the correct amount of asymmetry between high and low frequency wings. Improvement over previous models for the pressure broadening is obtained at frequencies g\sim 55 GHz. This approach is not specific to oxygen and could be adapted to other similar molecules.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:23 ,  Issue: 4 )