By Topic

Propagation predictions and studies using a ray tracing program combined with a theoretical ionospheric model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Myung Lee ; RCA, Clover Communications, Inc., NJ, USA ; Nisbet, J.

Radio wave propagation predictions are described in which modern comprehensive theoretical ionospheric models are coupled with ray-tracing programs. In the computer code described, a network of electron density and collision frequency parameters along a band about the great circle path is calculated by specifying the transmitter and receiver geographic coordinates, time, the day number, and the 2800-MHz solar flux. The ray paths are calculated on specifying the frequency, mode, range of elevation angles, and range of azimuth angles from the great circle direction. The current program uses a combination of the Penn State MKI E and F region models and the Mitra-Rowe D and E region model. Application of the technique to the prediction of satellite to ground propagation and calculation of oblique incidence propagation paths and absorption are described. The implications of the study to the development of the next generation of ionospheric models are discussed.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:23 ,  Issue: 1 )