By Topic

A new procedure for weighted random built-in self-test

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
F. Muradali ; VLSI Design Lab., McGill Univ., Montreal, Que., Canada ; V. K. Agarwal ; B. Nadeau-Dostie

It is proposed that a pseudorandom sequence and a single weighted random sequence be used to implement built-in self-test (BIST) efficiently in a large integrated scan circuit which would otherwise need an excessive pseudorandom test length. A method of determining the weight set and the approximate pseudorandom and weighted random test lengths, based on fast fault simulation tools, is suggested. By modifying specific scan cells, the BIST hardware conditionally generates the weighted stream locally, at specific input sites. A weighted control signal is used to regulate the proportion of weighted and pseudorandom inputs. Apart from determining that, in the cases examined, one weight set was sufficient for a notable decrease in test time, it was also noticed that a very coarse weight set (i.e. restricting biases to 0, 0.25, 0.5, 0.75, and 1) provides acceptable results. Using finer resolution within the weight set usually results in a slightly higher coverage, but at the expense of a much higher area overhead

Published in:

Test Conference, 1990. Proceedings., International

Date of Conference:

10-14 Sep 1990