By Topic

A new numerical approach to the calculation of electromagnetic scattering properties of two-dimensional bodies of arbitrary cross section

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
D. Wilton ; University of Mississippi, University, MS, USA ; R. Mittra

A new method is introduced for formulating the scattering problem in which the scattered fields (and the interior fields in the case of a dielectric scatterer) are represented in an expansion in terms of free-space modal wave functions in cylindrical coordinates, the coefficients of which are the unknowns. The boundary conditions are satisfied using either an analytic continuation procedure, in which the far-field pattern (in Fourier series form) is continued into the near field and the boundary conditions are applied at the surface of the scatterer; or the completeness of the modal wave functions, to approximately represent the fields in the interior and exterior regions of the scatterer directly. The methods were applied to the scattering of two-dimensional cylindrical scatterers of arbitrary cross section and only the TM polarization of the excitation is considered. The solution for the coefficients of the modal wave functions are obtained by inversion of a matrix which depends only on the shape and material of the scatterer. The methods are illustrated using perfectly conducting square and elliptic cylinders and elliptic dielectric cylinders. A solution to the problem of multiple scattering by two conducting scatterers is also obtained using only the matrices characterizing each of the single scatterers. As an example, the method is illustrated by application to a two-body configuration.

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:20 ,  Issue: 3 )