Cart (Loading....) | Create Account
Close category search window
 

Scattering by imperfectly conducting wires

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Richmond, Jack H. ; Ohio State University, Columbus, OH, USA

An integral equation is developed for the current induced in a slender, imperfectly conducting wire of finite length by an incident plane wave. A system of linear equations is generated by enforcing the integral equation at a discrete set of points on the axis of the wire, and these equations are solved to determine the current distribution. The scattered fields and the echo area are then calculated in a straightforward manner. Numerical results are presented for the backscatter echo area of copper, platinum, and bismuth wires at the broadside aspect with lengths up to1.8lambda. These calculations show good agreement with experimental measurements. In addition, graphs are included to show the current distributions on these wires at the second resonance, the echo-area patterns for oblique incidence, and the broadside echo-area curves for perfectly conducting wires and copper wires with lengths up to3.54lambda.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:15 ,  Issue: 6 )

Date of Publication:

November 1967

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.