By Topic

Application of bernstein polynomials and interpolation theory to linear array synthesis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Ma, M. ; National Bureau of Standards, Boulder, CO, USA

This paper describes some new methods of synthesizing linear antenna arrays. The methods are developed from a re-examination of the well-known Bernstein polynomials and of the classical theories on approximation and interpolation. Both the ordinary and the trigonometric interpolations are considered. With these methods, one is able to synthesize an array such that 1) an upper bound of the errors between the specified and synthesized patterns can be estimated, 2) either the maximum deviation or the mean-square error can be made to be minimum if the total number of elements in the array is prechosen, or 3) a least required number of elements can be determined if the error specifications are given.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:12 ,  Issue: 6 )