Cart (Loading....) | Create Account
Close category search window

A theoretical treatment of low-frequency loop antennas with permeable cores

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Islam, M. ; Laboratory for Electronics, Inc., Boston, MA, USA

Solution for retarded vector potential due to a circular loop of current and perturbed by the presence of a permeable infinitely-long cylinder is derived from Maxwell's equations and the standard boundary conditions that the tangential component ofEis strictly continuous across the boundary, and the difference of the tangential components ofHon the boundary is equal to the true surface current. The geometry of the permeable core dictated the use of a circular cylindrical coordinate system for the problem. The dimensions of the current loop are assumed to be small, compared to the wavelengths of the field quantities involved, to justify the assumption of uniform current density throughout the loop. It has been shown that the resultant potential consists of two parts: one part is due to the loop only; and the other part is due to the presence of the permeable core. Using the expressions for the retarded vector potential, the Poynting vector and the rate of energy outflow have been calculated. The power outflow has been evaluated using a computer for certain sets of parameters. The method as to how similar procedure could be used to obtain solution for a prolate spheroidal core has been indicated.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:11 ,  Issue: 2 )

Date of Publication:

Mar 1963

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.