Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

On the evaluation of JavaSymphony for cluster applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Fahringer, T. ; Inst. for Software Sci., Univ. of Vienna, Austria ; Jugravu, A. ; Di Martino, B. ; Venticinque, S.
more authors

In the past few years, increasing interest has been shown in using Java as a language for performance-oriented distributed and parallel computing. Most Java-based systems that support portable parallel and distributed computing either require the programmer to deal with intricate low level details of Java which can be a tedious, time-consuming and error-prone task, or prevent the programmer from controlling locality of data. In contrast to most existing systems, JavaSymphony - a class library written entirely in Java - allows to control parallelism, load balancing and locality at a high level. Objects can be explicitly distributed and migrated based on virtual architectures which impose a virtual hierarchy on a distributed/parallel system of physical computing nodes. The concept of blocking/nonblocking remote method invocation is used to exchange data among distributed objects and to process work by remote objects. We evaluate the JavaSymphony programming API for a variety of distributed/parallel algorithms which comprises backtracking, N-body, encryption/decryption algorithms and asynchronous nested optimization algorithms. Performance results are presented for both homogeneous and heterogeneous cluster architectures. Moreover, we compare JavaSymphony with an alternative well-known semi-automatic system.

Published in:

Cluster Computing, 2002. Proceedings. 2002 IEEE International Conference on

Date of Conference: