By Topic

Efficient barrier using remote memory operations on VIA-based clusters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
R. Gupta ; Ohio State Univ., Columbus, OH, USA ; V. Tipparaju ; J. Nieplocha ; D. Panda

Most high performance scientific applications require efficient support for collective communication. Point-to-point message-passing communication in current generation clusters are based on the Send/Recv communication model. Collective communication operations built on top of such point-to-point message-passing operations might achieve suboptimal performance. VIA and the emerging InfiniBand architecture support remote DMA operations, which allow data to be moved between the nodes with low overhead; they also allow to create and provide a logical shared memory address space across the nodes. In this paper we focus on barrier, a frequently-used collective operations. We demonstrate how RDMA write operations can be used to support an inter-node barrier in a cluster with SMP nodes. Combining this with a scheme to exploit shared memory within a SMP node, we develop a fast barrier algorithm for a cluster of SMP nodes with a cLAN VIA interconnect. Compared to current barrier algorithms using the Send/Recv communication model, the new approach is shown to reduce barrier latency on a 64 processor (32 dual nodes) system by up to 66%. These results demonstrate that high performance and scalable barrier implementations can be delivered on current and next generation VIA/Infiniband-based clusters with RDMA support.

Published in:

Cluster Computing, 2002. Proceedings. 2002 IEEE International Conference on

Date of Conference: