By Topic

Modeling distributed energy resource dynamics on the transmission system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Guttromson, R.T. ; Pacific Northwest Nat. Lab., Richland, WA, USA

As distributed energy resource (DER) projects grow in popularity, there has been little focus on their potential to influence the dynamic stability of a transmission system. If implemented in large enough numbers, DER equipment may feasibly be leveraged to provide ancillary services such as spinning reserve, system inertia, or system stabilization. To determine the potential impacts of DER on future transmission grid stability, dynamic models of DER load combinations were created, reduced in order, and scattered throughout Central and Southern California within an existing Western Systems Coordinating Council (WSCC) dynamic model. Evaluation of the composite WSCC-DER dynamic model allows correlations to be drawn between various DER properties and the transmission grid stability. Key findings show that increasing DER inertia tends to destabilize the transmission system. The cause of this counterintuitive relationship requires further study but likely is related to the high impedance separating the DER from the transmission grid.

Published in:

Power Systems, IEEE Transactions on  (Volume:17 ,  Issue: 4 )