Cart (Loading....) | Create Account
Close category search window
 

A two-step chondrocyte recovery system based on thermally sensitive elastin-like polypeptide scaffolds for cartilage tissue engineering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Betre, H. ; Dept. of Biomed. Eng., Duke Univ., Durham, NC, USA ; Chilkoti, A. ; Setton, L.A.

A "two step" tissue engineering strategy was developed to promote rapid matrix accumulation in cartilage constructs in vitro. Chondrocytes expanded in monolayer were encapsulated and cultured in a genetically engineered, thermally sensitive elastin-like polypeptide (ELP) for ten days. The resulting cell-matrix pellets were recovered from the ELP and cultured on inserts for up to four weeks, where nutrient diffusion was not impeded by the presence of the scaffold. Approximately two-milligram (dry weight) tissue was generated that resembles native articular cartilage in histological appearance and biochemical composition. These results suggest that rapid and large cartilage construct formation is possible in vitro, following a period of early incubation and recovery from the thermally responsive ELP.

Published in:

Engineering in Medicine and Biology, 2002. 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society EMBS/BMES Conference, 2002. Proceedings of the Second Joint  (Volume:1 )

Date of Conference:

2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.