Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Response of endothelial cells to combined fluid shear stress and cyclic strain

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Owatverot, T. ; Dept. of Biomed. Eng., Washington Univ., St. Louis, MO, USA ; Yin, F.-C.P.

The reorientation responses of endothelial cells to cyclic strain and shear stress are very different-they align parallel to the fluid shear and perpendicular to the strain direction. In straight vessels these stimuli reinforce each other to cause axial alignment. Under other conditions, one or the other stimulus may become dominant. There are, however, few detailed studies of cellular responses to multiple stimuli. Therefore, we investigated the combined effects of applying these stimuli at "equipotent" levels in reinforcing and counteracting fashion. Pure uniaxial cyclic strain of 2% at 0.5 Hz, steady fluid shear stress at 80 dyne/cm2 and pulsatile fluid shear stress at 20 ± 10 dyne/cm2 at 0.5 Hz produced the same time course of cell reorientation and were thus deemed equipotent. When steady shear or pulsatile shear were applied in a reinforcing manner with cyclic strain, the response appeared to be synergistic. When applied in a counteracting fashion, however, the response was not significantly different from that in static controls. These results suggest that the magnitude and direction of cyclic strain and fluid shear are important determinants, both individually and collectively, of endothelial cell response.

Published in:

Engineering in Medicine and Biology, 2002. 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society EMBS/BMES Conference, 2002. Proceedings of the Second Joint  (Volume:1 )

Date of Conference: