By Topic

Coordinated multihop scheduling: a framework for end-to-end services

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chengzhi Li ; Dept. of Comput. Sci., Virginia Univ., Charlottesville, VA, USA ; Knightly, E.W.

In multihop networks, packet schedulers at downstream nodes have an opportunity to make up for excessive latencies due to congestion at upstream nodes. Similarly, when packets incur low delays at upstream nodes, downstream nodes can reduce priority and schedule other packets first. The goal of this paper is to define a framework for design and analysis of coordinated multihop scheduling (CMS) which exploits such internode coordination. We first provide a general CMS definition which enables us to classify a number of schedulers from the literature, including G-EDF, FIFO+, CEDF, and work-conserving CJVC as examples of CMS schedulers. We then develop a distributed theory of traffic envelopes which enables us to derive end-to-end statistical admission control conditions for CMS schedulers. We show that CMS schedulers are able to limit traffic distortion to within a narrow range resulting in improved end-to-end performance and more efficient resource utilization. Consequently, our technique exploits statistical resource sharing among flows, classes, and nodes, and our results provide the first statistical multinode multiclass admission control algorithm for networks of work conserving servers.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:10 ,  Issue: 6 )