By Topic

A comparison of SEU tolerance in high-speed SiGe HBT digital logic designed with multiple circuit architectures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Guofu Niu ; Electr. & Comput. Eng. Dept., Auburn Univ., AL, USA ; Krithivasan, R. ; Cressler, J.D. ; Riggs, P.A.
more authors

The single-event upset (SEU) responses of three D flip-flop circuits, including two unhardened, and one current-sharing hardened (CSH) circuit, are examined using device and circuit simulation. The circuit that implements the conventional D flip-flop logic using standard bipolar NAND gates shows much better SEU performance than the other two. Cross coupling at transistor level in the storage cell of the other two circuits increases their vulnerability to SEU. The observed differences are explained by analyzing the differential output of the emitter coupled pair being hit. These results suggest a potential path for achieving sufficient SEU tolerance in high-speed SiGe heterojunction bipolar transistor (HBT) digital logic for many space applications.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:49 ,  Issue: 6 )