By Topic

Radiation tolerance of prototype BTeV pixel detector readout chips

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

12 Author(s)

High-energy and nuclear physics experiments need tracking devices with increasing spatial precision and readout speed in the face of ever-higher track densities and increased radiation environments. The new generation of hybrid pixel detectors (arrays of silicon diodes bump-bonded to arrays of front-end electronic cells) is the state-of-the-art technology able to meet these challenges. We report on irradiation studies performed on BTeV pixel readout chip prototypes exposed to a 200-MeV proton beam at the Indiana University Cyclotron Facility. A prototype pixel readout chip (preFPIX2) has been developed at Fermilab for collider experiments and implemented in standard 0.25-μm CMOS technology following radiation-tolerant design rules. The chip contains a variety of functional blocks (analog front ends, registers, state machines, and digital-to-analog converters). The tests confirm the radiation tolerance to proton total dose up to 87 Mrad of all of these circuits. In addition, nondestructive radiation-induced single-event upsets have been observed in on-chip static registers, and the single-bit upset cross-section has been extensively measured.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:49 ,  Issue: 6 )