By Topic

Analytical model for proton radiation effects in bipolar devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
H. J. Barnaby ; Dept. of Electr. & Comput. Eng., Arizona Univ., Tucson, AZ, USA ; S. K. Smith ; R. D. Schrimpf ; D. M. Fleetwood
more authors

The input bias current response of LM124 operational amplifiers to proton irradiation is shown to correlate with the response of identical part types exposed to neutrons and, subsequently, irradiated with X-rays. Moreover, the bias current responses to proton and combined neutron/X-ray exposures are more sublinear than the sum of neutron and X-ray radiation responses measured independently. These data indicate that the ionization defects introduced by proton irradiation moderate the effects of proton-induced displacement damage in the critical bipolar transistors within the LM124. An analytical model is presented that characterizes the various mechanisms of proton radiation effects in bipolar transistors, including the combined effects of oxide charge and bulk traps on carrier recombination. Prototype transistor responses simulated using the model show good correlation with the sublinear characteristics observed in the experimental data. Furthermore, the model is used to assess whether a bipolar junction transistor (BJT), designed with specific structural characteristics and operating in a proton-rich environment, will suffer the most degradation from damage caused by bulk displacement, ionization damage, or a combination of both.

Published in:

IEEE Transactions on Nuclear Science  (Volume:49 ,  Issue: 6 )