By Topic

Theoretical accuracy of synthetic aperture sonar micronavigation using a displaced phase-center antenna

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bellettini, A. ; NATO SACLANT Undersea Res. Centre, La Spezia, Italy ; Pinto, M.A.

The Cramer-Rao lower bounds on the cross-track translation and rotation of a displaced phase-center antenna (DPCA) in the slant range plane between two successive pings (known as DPCA sway and yaw in what follows) are computed, assuming statistically homogeneous backscatter. These bounds are validated using experimental data from a 118-182-kHz sonar, showing an accuracy of the order of 20 microns on the ping-to-ping cross-track displacements. Next, the accuracy required on the DPCA sway and yaw in order to achieve a given synthetic aperture sonar (SAS) beampattern specification, specified by the expected SAS array gain, is computed as a function of the number P of pings in the SAS. Higher accuracy is required when P increases to counter the accumulation of errors during the integration of the elementary ping-to-ping estimates: the standard deviation must decrease as P-12/ for the DPCA sway and P-32/ for the yaw. Finally, by combining the above results, the lower bounds on DPCA micronavigation accuracy are established. These bounds set an upper limit to the SAS length achievable in practice. The maximum gain Q in cross-range resolution achievable by a DPCA micronavigated SAS is computed as a function of the key SAS parameters. These theoretical predictions are compared with simulations and experimental results.

Published in:

Oceanic Engineering, IEEE Journal of  (Volume:27 ,  Issue: 4 )