By Topic

Multivariate statistical methods for modeling and analysis of wafer probe test data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
K. R. Skinner ; Arizona State Univ., Tempe, AZ, USA ; D. C. Montgomery ; G. C. Runger ; J. W. Fowler
more authors

Probe testing following wafer fabrication can produce extremely large amounts of data, which is often used to inspect a final product to determine if the product meets specifications. This data can be further utilized in studying the effects of the wafer fabrication process on the quality or yield of the wafers. Relationships among the parameters may provide valuable process information that can improve future production. This paper compares many methods of using the probe test data to determine the cause of low yield wafers. The methods discussed include two classes of traditional multivariate statistical methods, clustering and principal component methods and regression-based methods. These traditional methods are compared to a classification and regression tree (CART) method. The results for each method are presented. CART adequately fits the data and provides a "recipe" for avoiding low yield wafers and because CART is distribution-free there are no assumptions about the distributional properties of the data. CART is strongly recommended for analyzing wafer probe data.

Published in:

IEEE Transactions on Semiconductor Manufacturing  (Volume:15 ,  Issue: 4 )