By Topic

Evolving pattern recognition systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rizki, M.M. ; Dept. of Comput. Sci. & Eng., Wright State Univ., Dayton, OH, USA ; Zmuda, M.A. ; Tamburino, L.A.

A hybrid evolutionary learning algorithm is presented that synthesizes a complete multiclass pattern recognition system. The approach uses a multifaceted representation that evolves layers of processing to perform feature extraction from raw input data, select cooperative sets of feature detectors, and assemble a linear classifier that uses the detectors' responses to label targets. The hybrid algorithm, called hybrid evolutionary learning for pattern recognition (HELPR), blends elements of evolutionary programming, genetic programming, and genetic algorithms to perform a search for an effective set of feature detectors. Individual detectors are represented as expressions composed of morphological and arithmetic operations. Starting with a few small random expressions, HELPR expands the number and complexity of the features to produce a recognition system that achieves high accuracy. Results are presented that demonstrate the performance of HELPR-generated recognition systems applied to the task of classification of high-range resolution radar signals.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:6 ,  Issue: 6 )