By Topic

Quantum-inspired evolutionary algorithm for a class of combinatorial optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kuk-Hyun Han ; Dept. of Electr. Eng. & Comput. Sci., Korea Adv. Inst. of Sci. & Technol., Daejeon, South Korea ; Jong-Hwan Kim

This paper proposes a novel evolutionary algorithm inspired by quantum computing, called a quantum-inspired evolutionary algorithm (QEA), which is based on the concept and principles of quantum computing, such as a quantum bit and superposition of states. Like other evolutionary algorithms, QEA is also characterized by the representation of the individual, evaluation function, and population dynamics. However, instead of binary, numeric, or symbolic representation, QEA uses a Q-bit, defined as the smallest unit of information, for the probabilistic representation and a Q-bit individual as a string of Q-bits. A Q-gate is introduced as a variation operator to drive the individuals toward better solutions. To demonstrate its effectiveness and applicability, experiments were carried out on the knapsack problem, which is a well-known combinatorial optimization problem. The results show that QEA performs well, even with a small population, without premature convergence as compared to the conventional genetic algorithm.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:6 ,  Issue: 6 )